Mathematical Formula Booklet

B-level

Denne udgave af Matematisk formelsamling stx B-niveau er udgivet af Undervisningsministeriet og gjort tilgængelig på uvm.dk.

Formelsamlingen er udarbejdet i et samarbejde mellem Matematiklærerforeningen og Undervisningsministeriet, Styrelsen for Undervisning og Kvalitet, maj 2018

Kopiering til andet end personlig brug må kun ske efter aftale med Copy-Dan.

ISBN:
978-87-93747-04-3
Forfattere: Gert Schomacker, Jesper Bang-Jensen, Bodil Bruun og Jørgen Dejgaard

Edited by Gert Schomacker, Jesper Bang-Jensen, Bodil Bruun and Jørgen Dejgaard.
Translated by Gert Schomacker.
Version May 2020

Preface:

Preface:

"Mathematical formula collection stx B" has been prepared for use by the students at the written exam and in the teaching of mathematics at the stx B level.

The formula collection contains the topics that appear in the mathematics curriculum at stx B-level within both core content and supplementary content.

For the purpose of overview, formulas for area and volume of elementary geometric figures are included.

Furthermore, the formula collection contains a list of standard mathematical symbols.

The purpose of this is to give students a quick overview and to contribute to guide teachers and authors of educational material to use uniform notation, symbol language and terminology. The list of standard mathematical symbols therefore goes beyond the core content but remains within the mathematical universe at the upper secondary level (stx and hf).

A few of the formulas in the formula collection are only applicable under some conditions (e.g., that the denominator of a fraction is different from 0). For reasons of clarity such assumptions are not explicitly mentioned.

The figures are included as an illustration of the formulas. The figure often shows only one case among several possible cases.

The meaning of the quantities appearing in the formulas is not always explained. However, in cases where the meaning does not follow immediately by customary usage an explanation will be given.

Birte Iversen
Ministry of Education,
The Board of Education and Quality, Office of Examinations, Exams and Tests

May 2020

Contents

Percentage and interest 5
Index values 5
Proportionality 6
Fraction rules 6
Square expansions 7
Powers and roots 7
Similar triangles 8
Right-angled triangle 8
Triangles 9
Vectors in 2D 10
Lines, circles, and parabolas 13
Linear functions 17
Quadratic functions 17
Logarithms 18
Exponentially increasing functions 19
Exponentially decreasing functions 20
Power functions 21
Trigonometric functions 22
Differential calculus 23
Derivatives 24
Grouped observations 25
Ungrouped observations 26
Linear regression 28
Combinatorics 29
Probability 30
Binomial distribution 31
Pascal's triangle 33
Multiplication table 34

Percentage and interest

Present value B
Future value S
Relative change,
growth rate r

Percentage change p

Compound interest formula
Principal K_{0}
Interest rate $p \%$ per period
Future value K after n periods

Annuity savings
Deposit every period b
Interest rate r
Number of deposits n Future value A after last deposit

Annuity loan
Principal G
Interest rate r
Number of payments n
Periodic payment y

Index values

Value	B	S
Index value	I_{B}	I_{S}

(1) $S=B \cdot(1+r)$
(2) $\quad r=\frac{S}{B}-1$
(3) $p \%=r \cdot 100 \%$
(4) $K=K_{0} \cdot(1+r)^{n}$, where $r=\frac{p}{100}$
(5) $\quad A=b \cdot \frac{(1+r)^{n}-1}{r}$
(6) $y=G \cdot \frac{r}{1-(1+r)^{-n}}$
(7)

$$
I_{S}=\frac{S}{B} \cdot I_{B} \quad S=\frac{I_{S}}{I_{B}} \cdot B
$$

Proportionality

x and y are proportional
Proportionality constant k

Fraction rules

(10) $a \cdot \frac{b}{c}=\frac{a \cdot b}{c}$
(11) $\frac{a}{\frac{b}{c}}=\frac{a \cdot c}{b}$
(12) $\frac{\frac{a}{b}}{c}=\frac{a}{b \cdot c}$
(13) $\frac{\frac{a}{b}}{\frac{c}{d}}=\frac{a \cdot d}{b \cdot c}$
(14) $\frac{a}{b} \cdot \frac{c}{d}=\frac{a \cdot c}{b \cdot d}$

Square expansions

(15) $\quad(a+b)^{2}=a^{2}+b^{2}+2 a \cdot b$
(16) $\quad(a-b)^{2}=a^{2}+b^{2}-2 a \cdot b$
(17) $\quad(a+b)(a-b)=a^{2}-b^{2}$

Powers and roots

(18) $\quad a^{r} \cdot a^{s}=a^{r+s}$
(19) $\frac{a^{r}}{a^{s}}=a^{r-s}$
(20) $\quad\left(a^{r}\right)^{s}=a^{r \cdot s}$
(21) $\quad(a \cdot b)^{r}=a^{r} \cdot b^{r}$
(22) $\quad\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$
(23) $\quad a^{0}=1$
(24) $\quad a^{-r}=\frac{1}{a^{r}}$
(25) $\quad a^{-1}=\frac{1}{a}$
(26) $\sqrt[r]{a}=a^{\frac{1}{r}}$
(27) $\sqrt[s]{a^{r}}=a^{\frac{r}{s}}$
(28) $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$
(29) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
(30) $\sqrt{a}=a^{\frac{1}{2}}$

Similar triangles

Right-angled triangle

The Pythagorean theorem
cosine
sine
tangent
(35) $\sin (A)=\frac{a}{c}$
(31) $\frac{a_{1}}{a}=\frac{b_{1}}{b}=\frac{c_{1}}{c}=k$
(32)

$$
\begin{aligned}
a_{1} & =k \cdot a \\
b_{1} & =k \cdot b \\
c_{1} & =k \cdot c
\end{aligned}
$$

(33) $c^{2}=a^{2}+b^{2}$
(34) $\cos (A)=\frac{b}{c}$
(36) $\quad \tan (A)=\frac{a}{b}$

Triangles

Sum of angles of a triangle
Area T of a triangle

Law of cosines

Law of sines

Area T of a triangle

(37) $A+B+C=180^{\circ}$
(38) $T=\frac{1}{2} h \cdot g$
(39) $c^{2}=a^{2}+b^{2}-2 a \cdot b \cdot \cos (C)$
(40) $\frac{a}{\sin (A)}=\frac{b}{\sin (B)}=\frac{c}{\sin (C)}$
(41) $T=\frac{1}{2} a \cdot b \cdot \sin (C)$

Vectors in 2D

(2)

Coordinates of vector \vec{a}, where $|\vec{i}|=|\vec{j}|=1$

Unit vector
(43) $\vec{e}=\binom{\cos (v)}{\sin (v)}$

Unit vector \vec{e} in the same direction as \vec{a}

Length (norm) of vector \vec{a}

Vector \vec{a} multiplied by a scalar k
(42) $\quad \vec{a}=a_{1} \cdot \vec{i}+a_{2} \cdot \vec{j}=\binom{a_{1}}{a_{2}}$

$$
\vec{a}=a_{1} \cdot \vec{i}+a_{2} \cdot \vec{j}=\binom{a_{1}}{a_{2}}
$$

(45) $\left.\quad|\vec{a}|=\left\lvert\, \begin{array}{l}a_{1} \\ a_{2}\end{array}\right.\right) \mid=\sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}}$
(46) $k \cdot \vec{a}=k \cdot\binom{a_{1}}{a_{2}}=\binom{k \cdot a_{1}}{k \cdot a_{2}}$

Sum of two vectors

Difference between two vectors

Coordinates of vector $\overrightarrow{A B}$
(49) $\quad \overrightarrow{A B}=\binom{x_{2}-x_{1}}{y_{2}-y_{1}}$

Scalar product (dot product)
of \vec{a} and \vec{b}
(50) $\quad \vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}$
(51) $\quad \vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cdot \cos (v)$
(52) $\quad \cos (v)=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}$

Perpendicular vectors
(53) $\vec{a} \cdot \vec{b}=0 \Leftrightarrow \vec{a} \perp \vec{b}$

Squaring a vector
(54) $\vec{a} \cdot \vec{a}=\vec{a}^{2}=|\vec{a}|^{2}$

Projection of \vec{b} onto \vec{a}

The length of the projection vector
(2)

Perpendicular vector to \vec{a}
(57)

$$
\hat{\vec{a}}=\binom{\widehat{a_{1}}}{a_{2}}=\binom{-a_{2}}{a_{1}}
$$

$\vec{b}=\binom{b_{1}}{b_{2}} \sim \vec{a}=\binom{a_{1}}{a_{2}}$
The determinant of a pair of vectors (\vec{a}, \vec{b})

Parallel vectors

(60) $\quad \operatorname{det}(\vec{a}, \vec{b})=0 \Leftrightarrow \vec{a} \| \vec{b}$

Equation of the line l through $Q(0, b)$ with slope a

Slope (gradient) a of the line l passing through
$A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$
y-intercept

Equation of the line l through $A\left(x_{1}, y_{1}\right)$ of slope a

Angle v of inclination is the angle from the x-axis to l (positive or negative)

Equation of a vertical line
(62) $y=a \cdot x+b$
(63) $\quad a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(64) $b=y_{1}-a \cdot x_{1}$
(65) $y=a \cdot\left(x-x_{1}\right)+y_{1}$
(66) $\quad a=\tan (v)$
(67) $\quad x=k$

Distance $|A B|$ between two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$

Midpoint M of line segment $A B$

Equation of the line l passing through P_{0} having normal vector $\vec{n}=\binom{a}{b}$

(69) $|A B|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(70) $M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
(71) $a \cdot\left(x-x_{0}\right)+b \cdot\left(y-y_{0}\right)=0$

Parametric equations of the line l passing through P_{0} having direction vector $\vec{r}=\binom{r_{1}}{r_{2}}$

Distance $\operatorname{dist}(P, l)$ of the point $P\left(x_{1}, y_{1}\right)$ to the line l with equation $y=a \cdot x+b$

Distance $\operatorname{dist}(P, l)$ of the point
$P\left(x_{1}, y_{1}\right)$ to the line l with equation $a \cdot x+b \cdot y+c=0$
(2)

Equation of circle with center
(72) $\quad\binom{x}{y}=\binom{x_{0}}{y_{0}}+t\binom{r_{1}}{r_{2}}$
(73) $\quad \operatorname{dist}(P, l)=\frac{\left|a \cdot x_{1}+b-y_{1}\right|}{\sqrt{a^{2}+1}}$
(74) $\quad \operatorname{dist}(P, l)=\frac{\left|a \cdot x_{1}+b \cdot y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=r^{2} \tag{75}
\end{equation*}
$$

Equation of parabola with symmetry axis parallel to the y-axis

Vertex T

Points of intersection S_{1} og S_{2} with the x-axis

$$
\begin{equation*}
\text { (77) } \quad T(h, k)=T\left(\frac{-b}{2 a}, \frac{-d}{4 a}\right), \quad d=b^{2}-4 a c \tag{77}
\end{equation*}
$$

(76) $y=a \cdot x^{2}+b \cdot x+c=a \cdot(x-h)^{2}+k$
(78) $\quad S_{1}\left(\frac{-b-\sqrt{d}}{2 a}, 0\right), S_{2}\left(\frac{-b+\sqrt{d}}{2 a}, 0\right)$

Linear functions

First degree polynomial, linear function f

Slope (gradient) a from two points on the line between
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
y-intercept

Quadratic functions

Quadratic function (second degree polynomial) p with zeros (roots) x_{1} and x_{2}

Zeros (roots) of p

Vertex T

(79) $\quad f(x)=a \cdot x+b$
(80) $\quad a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(81) $\quad b=y_{1}-a \cdot x_{1}$
(82) $p(x)=a \cdot x^{2}+b \cdot x+c$

$$
=a \cdot\left(x-x_{1}\right) \cdot\left(x-x_{2}\right)
$$

(84) $T\left(\frac{-b}{2 a}, \frac{-d}{4 a}\right)$

Logarithms

The graph of the natural logarithm
(85) $\quad \ln (x) \rightarrow-\infty \quad$ as $\quad x \rightarrow 0$
(86) $\quad \ln (x) \rightarrow \infty \quad$ as $\quad x \rightarrow \infty$
(87) $\quad y=\ln (x) \quad \Leftrightarrow \quad x=\mathrm{e}^{y}$
(88) $\quad \ln (\mathrm{e})=1$
(89) $\quad \ln (a \cdot b)=\ln (a)+\ln (b)$
(90) $\quad \ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$
(91) $\quad \ln \left(a^{r}\right)=r \cdot \ln (a)$
$\stackrel{\substack{(2) \\ 1 \\ 1 \\ \overbrace{1}^{2} \\ \log (x)}}{(1)}$
The graph of the logarithmic with base 10
(92) $\quad \log (x) \rightarrow-\infty \quad$ as $\quad x \rightarrow 0$
(93) $\quad \log (x) \rightarrow \infty \quad$ as $\quad x \rightarrow \infty$
(94) $y=\log (x) \Leftrightarrow x=10^{y}$
(95) $\quad \log (10)=1$
(96) $\quad \log (a \cdot b)=\log (a)+\log (b)$

$$
\begin{equation*}
\log \left(\frac{a}{b}\right)=\log (a)-\log (b) \tag{97}
\end{equation*}
$$

(98) $\quad \log \left(a^{r}\right)=r \cdot \log (a)$

Exponentially increasing functions

The graph of an exponentially increasing function f
$a>1$
growth rate $r>0$
$k>0$

Multiplication factor a given two points on the graph $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
y-intercept

Doubling constant T_{2}
(104) $\quad T_{2}=x_{2}-x_{1}$
(105) $\quad T_{2}=\frac{\log (2)}{\log (a)}=\frac{\ln (2)}{\ln (a)}=\frac{\ln (2)}{k}$

Exponentially decreasing functions

The graph of an exponentially decreasing function f
$0<a<1$
growth rate $r<0$
$k<0$

Multiplication factor a using two points on the graph $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$
y-intercept

(106) $f(x)=b \cdot a^{x}$

$$
=b \cdot(1+r)^{x}
$$

$$
=b \cdot \mathrm{e}^{k \cdot x} \text {, where } k=\ln (a)
$$

(107) $\quad f(x) \rightarrow 0 \quad$ as $\quad x \rightarrow \infty$
(108) $f(x) \rightarrow \infty \quad$ as $\quad x \rightarrow-\infty$
(109) $\quad a=\sqrt[x_{2}-x_{1}]{\frac{y_{2}}{y_{1}}}=\left(\frac{y_{2}}{y_{1}}\right)^{\frac{1}{x_{2}-x_{1}}}$
(110) $b=\frac{y_{1}}{a^{x_{1}}}$

Halving constant (half-life) $T_{\frac{1}{2}}$
(111) $T_{\frac{1}{2}}=x_{2}-x_{1}$
(112) $T_{\frac{1}{2}}=\frac{\log \left(\frac{1}{2}\right)}{\log (a)}=\frac{\ln \left(\frac{1}{2}\right)}{\ln (a)}=\frac{\ln \left(\frac{1}{2}\right)}{k}$

Power functions

Power function

Graphs of $f(x)=x^{a}$

Determining the number a given two points on the graph $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$

Multiplying x by a factor $1+r_{x}$ will result in a multiplication of $f(x)$ by a factor $1+r_{y}$

Multiplying x by a factor k will result in a multiplication of $f(x)$ by a factor k^{a}

$$
\begin{equation*}
a=\frac{\log \left(y_{2}\right)-\log \left(y_{1}\right)}{\log \left(x_{2}\right)-\log \left(x_{1}\right)}=\frac{\ln \left(y_{2}\right)-\ln \left(y_{1}\right)}{\ln \left(x_{2}\right)-\ln \left(x_{1}\right)} \tag{114}
\end{equation*}
$$

(115) $\quad b=\frac{y_{1}}{x_{1}^{a}}$
(116) $\quad 1+r_{y}=\left(1+r_{x}\right)^{a}$

$$
\begin{equation*}
f(k \cdot x)=k^{a} \cdot f(x) \tag{117}
\end{equation*}
$$

Trigonometric functions

Sinusoidal function f
(118) $f(t)=A \cdot \sin (\omega \cdot t+\varphi)$

Graph of a sinusoidal function f with amplitude A and period T
(119) $T=t_{2}-t_{1}=\frac{2 \pi}{\omega}$

Differential Calculus

Derivative (differential
quotient) $f^{\prime}\left(x_{0}\right)$
of the function f at x_{0}

Equation of the tangent line t to the graph of f at $P\left(x_{0}, f\left(x_{0}\right)\right)$

Rules of differentiation

$$
\begin{align*}
f^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{120}\\
& =\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
\end{align*}
$$

$y=f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+f\left(x_{0}\right)$
or
$y=a \cdot x+b$, where
$a=f^{\prime}\left(x_{0}\right)$ and $b=y_{0}-a \cdot x_{0}$
(122) $(k \cdot f(x))^{\prime}=k \cdot f^{\prime}(x)$
(123) $\quad(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
(124) $\quad(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$
(125) $\quad(f(x) \cdot g(x))^{\prime}=$
$f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
$(f(a \cdot x+b))^{\prime}=a \cdot f^{\prime}(a \cdot x+b)$

Derivatives

Linear function	(127)	$a \cdot x+b$	a
	(128)	k	0
The natural logarithm	(129)	$\ln (x)$	$\frac{1}{x}=x^{-1}$
Exponential functions	(130)	e^{x}	e^{x}
	(131)	$\mathrm{e}^{k x}$	$k \cdot e^{k x}$
	(132)	a^{x}	$a^{x} \cdot \ln (a)$
Power functions	(133)	x^{a}	$a \cdot x^{a-1}$
	(134)	$\frac{1}{x}=x^{-1}$	$-\frac{1}{x^{2}}=-x^{-2}$
	(135)	$\sqrt{x}=x^{\frac{1}{2}}$	$\frac{1}{2 \sqrt{x}}=\frac{1}{2} x^{-\frac{1}{2}}$
Trigonometric functions	(136)	$\cos (x)$	$-\sin (x)$
	(137)	$\sin (x)$	$\cos (x)$

Function
Derivative
$y=f(x)$
$y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}$

Linear function
The natural logarithm
(127)
(128)
$\ln (x)$
$\frac{1}{x}=x^{-1}$
(130)
(131)
(133)
(137)
$\sin (x)$
$\cos (x)$

Grouped observations10%

Histogram

Histogram with equal intervals

Cumulative curve

(138) Area of a rectangle corresponds to the frequency for the interval
(139) Height of a rectangle corresponds to the frequency for the interval
(140) Q_{1} : lower quartile, 25%-fractile m : median, 50%-fractile Q_{3} : upper quartile, 75%-fractile $x_{p}: p \%$-fractile

Dot plot

Range

Interquartile range

Quartile set

Five-number summary
(141) Observations on a number line
(142) min: minimum
(143) max: maximum
(144) $\max -\min$
(145) m : median
(middle observation, when the number of observations is odd, otherwise the average of the two middle observations)
(146) Q_{1} : lower quartile
(median of the lower half of the observations)
Q_{3} : upper quartile (median of the upper half of the observations)
(148) $\quad Q_{3}-Q_{1}$
(149) Boxplot, box-and-whiskers plot (box height is irrelevant)
(150) $\quad\left(Q_{1}, m, Q_{3}\right)$
(151) $\left(\min , Q_{1}, m, Q_{3}, \max \right)$

Outlier

Mean \bar{x} of the observations
$x_{1}, x_{2}, \ldots, x_{n}$

Standard deviation of observations $x_{1}, x_{2}, \ldots, x_{n}$

Left-skew distribution

Non-skew distribution

Right-skew distribution
(152) An observation more than one and a half times the interquartile range below the lower quartile or more than one and a half times the interquartile range above the upper quartile

$$
\begin{equation*}
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \tag{153}
\end{equation*}
$$

$$
\begin{equation*}
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}} \tag{154}
\end{equation*}
$$

$$
=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}
$$

(155) Mean is less than median $\bar{x}<m$
(156) Mean equals median $\bar{x}=m$
(157) Mean is greater than median $\bar{x}>m$

Estimating the population mean and standard deviation using a random sample

 $x_{1}, x_{2}, \ldots, x_{n}$Estimate \bar{x} of the mean

Estimate s of the standard deviation
(153a) $\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$
(154a) $s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$

$$
=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}}
$$

Linear regression

Table with bivariate observed data

Regression line
(159)

Line of best fit, graph of $f(x)=a \cdot x+b$

Scatter plot and line of best fit
(160)

- observed data points
- model points

Residual
(161) Difference between observed y-value and the corresponding model y-value

Table of residuals
(162)

x	x_{1}	x_{2}	\ldots	x_{n}
Residual	$r_{1}=y_{1}-f\left(x_{1}\right)$	$r_{2}=y_{2}-f\left(x_{2}\right)$	\ldots	$r_{n}=y_{n}-f\left(x_{n}\right)$

Residual plot
(163)
(2)

Residual standard deviation
(164)

$$
s=\sqrt{\frac{r_{1}^{2}+r_{2}^{2}+\ldots+r_{n}^{2}}{n-2}}
$$

Combinatorics

Multiplication rule
Number of ways to choose both one element of N and one element of M, where N has n elements and M has m elements

Addition rule
Number of ways to choose either one element of N or one element of M, where N has n elements and M has m elements

Factorial

Permutations

Number of ways to select r elements among n elements, when order matters

Combinations

Number of ways to select r elements among n elements, when order does not matter
(165) $n \cdot m$
(166) $n+m$
(167) $n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1$
(168) $\quad P(n, r)=\frac{n!}{(n-r)!}$
(169) $K(n, r)=\frac{n!}{r!(n-r)!}$

Probability

Probability space with sample space U and probabilities p

Sample space U with n outcomes

Sum of all probabilities

Table of probabilities

Event A with
k outcomes from U

Probability of event A

Uniform probability space

All outcomes have the same probability

Probability of selecting an element from A

Probability of both A and B, when A and B are independent events

Probability of A or B, when A and B are mutually exclusive events
(170) (U, p)
(171) Set of all outcomes

$$
\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}
$$

(172) $\quad p_{1}+p_{2}+p_{3}+\ldots+p_{n}=1$

Outcome	u_{1}	u_{2}	u_{3}	\ldots	u_{n}
Probability	p_{1}	p_{2}	p_{3}	\ldots	p_{n}

(174) Set of k outcomes from U
(175) Sum of the probabilities of the k outcomes
(177) $\quad P(A)=\frac{k}{n}$

$$
=\frac{\text { number of favourable outcomes to } A}{\text { number of possible outcomes }}
$$

(178) $\quad P($ both A and $B)=P(A) \cdot P(B)$
(179) $\quad P(A$ or $B)=P(A)+P(B)$

Probability distribution table for a random variable X

Bar chart. Height of a bar corresponds to the probability of the outcome

Mean (mean value) of a random variable X

Variance of a random variable X

Standard deviation of random variable X

Binomial distribution

Binomially distributed random variable X with parameters n (number of trials) and p (probability of "success")
Binomial coefficient $K(n, r)$

Probability distribution for a binomially distributed random variable X

Mean μ

Standard deviation σ
(181)

x_{i}	x_{1}	x_{2}	x_{3}	\ldots	x_{n}
$P\left(X=x_{i}\right)$	p_{1}	p_{2}	p_{3}	\ldots	p_{n}

(2)

$$
\begin{align*}
\mu & =E(X)=\sum_{i=1}^{n} x_{i} \cdot P\left(X=x_{i}\right) \tag{182}\\
& =x_{1} \cdot p_{1}+x_{2} \cdot p_{2}+x_{3} \cdot p_{3}+\cdots+x_{n} \cdot p_{n}
\end{align*}
$$

$\operatorname{Var}(X)=\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \cdot P\left(X=x_{i}\right)$
$=\left(x_{1}-\mu\right)^{2} \cdot p_{1}+\cdots+\left(x_{n}-\mu\right)^{2} \cdot p_{n}$
$\sigma=\sigma(X)=\sqrt{\operatorname{Var}(X)}$

$$
\begin{equation*}
X \sim b(n, p) \tag{185}
\end{equation*}
$$

$$
\begin{align*}
& K(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!} \tag{186}\\
& K(n, r)=K(n, n-r) \tag{187}
\end{align*}
$$

$P(X=r)=K(n, r) \cdot p^{r} \cdot(1-p)^{n-r}$
$\mu=n \cdot p$
$\sigma=\sqrt{n \cdot p \cdot(1-p)}$

Number n of objects in the sample
95% confidence interval for population probability parameter p estimated from the sample proportion \hat{p}

Normal approximation to a binomially distributed random variable X with mean

$$
\mu=n \cdot p
$$

and standard deviation

$$
\sigma=\sqrt{n \cdot p \cdot(1-p)}
$$

$$
\begin{equation*}
\left[\hat{p}-2 \cdot \sqrt{\frac{\hat{p} \cdot(1-\hat{p})}{n}} ; \hat{p}+2 \cdot \sqrt{\frac{\hat{p} \cdot(1-\hat{p})}{n}}\right] \tag{191}
\end{equation*}
$$

$$
\longmapsto \quad \longmapsto \text { Normal outcomes } \longrightarrow
$$

$$
\begin{aligned}
& K(0,0) \\
& K(1,0) \quad K(1,1) \\
& K(2,0) \quad K(2,1) \quad K(2,2) \\
& K(3,0) \quad K(3,1) \quad K(3,2) \quad K(3,3) \\
& K(4,0) \quad K(4,1) \quad K(4,2) \quad K(4,3) \quad K(4,4) \\
& K(5,0) \quad K(5,1) \quad K(5,2) \quad K(5,3) \quad K(5,4) \quad K(5,5) \\
& K(6,0) \quad K(6,1) \quad K(6,2) \quad K(6,3) \quad K(6,4) \quad K(6,5) \quad K(6,6) \\
& K(7,0) \quad K(7,1) \quad K(7,2) \quad K(7,3) \quad K(7,4) \quad K(7,5) \quad K(7,6) \quad K(7,7) \\
& K(8,0) \quad K(8,1) \quad K(8,2) \quad K(8,3) \quad K(8,4) \quad K(8,5) \quad K(8,6) \quad K(8,7) \quad K(8,8)
\end{aligned}
$$

Multiplication table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80
5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
7	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140
8	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160
9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135	144	153	162	171	180
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
11	11	22	33	44	55	66	77	88	99	110	121	132	143	154	165	176	187	198	209	220
12	12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192	204	216	228	240
13	13	26	39	52	65	78	91	104	117	130	143	156	169	182	195	208	221	234	247	260
14	14	28	42	56	70	84	98	112	126	140	154	168	182	196	210	224	238	252	266	280
15	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	300
16	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256	272	288	304	320
17	17	34	51	68	85	102	119	136	153	170	187	204	221	238	255	272	289	306	323	340
18	18	36	54	72	90	108	126	144	162	180	198	216	234	252	270	288	306	324	342	360
19	19	38	57	76	95	114	133	152	171	190	209	228	247	266	285	304	323	342	361	380
20	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400

Red numbers: Squares

Area, circumference, volume and surface area of geometric figures

Triagle

$h \quad$ height
g base
A area
$A=\frac{1}{2} h \cdot g$

Parallelogram

$h \quad$ height
g base
A area
$A=h \cdot g$

Trapezium

$h \quad$ height
a, b parallel sides
$A \quad$ area $\quad A=\frac{1}{2} h \cdot(a+b)$

Circle

r radius
A area
O circumference

$$
A=\pi r^{2}
$$

$O=2 \pi r$

Sphere

r radius
O surface area

$$
\begin{aligned}
& O=4 \pi r^{2} \\
& V=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

V volume

Cylinder

h height
r base radius
O lateral surface area $O=2 \pi r \cdot h$
V volume
$V=\pi r^{2} \cdot h$

Cone

h	height	
s	length of slant	
r	base radius	
O	lateral surface area	$O=\pi r \cdot s$
V	volume	$V=\frac{1}{3} \pi r^{2} \cdot h$

Mathematical symbols

Symbol	Meaning	Examples, comments e.g.
$\{., ., .,$.	set in list form	$\{-5,0,3,10\},\{-5,0,3,10\},\{2,4,6, \ldots\}$
\mathbb{N}	the set of natural numbers	$\mathbb{N}=\{1,2,3, \ldots\}$
\mathbb{Z}	the set of integers	$\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q}	the set of rational numbers	tal, der kan skrives $\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}$
R	the set of real numbers	
E	belongs to / is an element of	$2 \in \mathbb{N}$
[a;b]	closed interval	$[1 ; 3]=\{x \in \mathbb{R} \mid 1 \leq x \leq 3\}$
] $a ; b$]	half-open interval	$] 1 ; 3]=\{x \in \mathbb{R} \mid 1<x \leq 3\}$
[$a ; b$ [half-open interval	$[1 ; 3[=\{x \in \mathbb{R} \mid 1 \leq x<3\}$
] $a ; b[$	open interval	$] 1 ; 3[=\{x \in \mathbb{R} \mid 1<x<3\}$
\subset	is a proper subset of	$\{1,2,3\} \subset \mathrm{N}$
\bigcirc	intersection set	$A \cap B \quad A \circlearrowleft B$
\cup	union set	$A \cup B$
1	set difference	$A \backslash B$
\bar{A}	complement of A	$U \backslash A$
\emptyset	the empty set	
	disjoint sets	$A \cap B=\emptyset$
\times	product set	[$-10 ; 10] \times[-10 ; 10]$
\wedge	"and" meaning "both and" (conjunction)	$x<2 \wedge y=5$
\checkmark	"or" meaning "and/or" (disjunction)	$x<2 \vee x>5$

Symbol	Meaning	Examples, comments e.g.
\Rightarrow	"implies", "if ... then" (implication)	$x=2 \Rightarrow x^{2}=4$
\Leftrightarrow	"equivalent","if and only if" (biconditional)	$x^{2}=4 \Leftrightarrow x=-2 \vee x=2$
$\sum_{i=1}^{n} a_{i}$	$a_{1}+a_{2}+\ldots+a_{n}$	$\sum_{i=1}^{4} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}$
n !	n factorial	$\begin{aligned} & n!=1 \cdot 2 \cdot \ldots \cdot n \quad \text { for } n \geq 1 \\ & 0!=1 \end{aligned}$
$f(x)$	value of the function f at x	If $f(x)=\sqrt{2 x+1}$, then $f(4)=3$.
$\mathrm{Dm}(f)$	domain of f	
$\operatorname{Vm}(f)$	range of f	
$f \circ g$	composite function	$(f \circ g)(x)=f(g(x))$
f^{-1}	inverse function	$s=f(t) \Leftrightarrow t=f^{-1}(s)$
$\log (x)$	logarithm with base 10	$y=\log (x) \Leftrightarrow x=10^{y}$
$\ln (x)$	natural logarithm	$y=\ln (x) \Leftrightarrow x=\mathrm{e}^{y}$
e^{x}	natural exponential function	e^{x} is also denoted $\exp (x)$
a^{x}	exponential function with base $a, a>0$	$b \cdot a^{x}$ can also be called an exponential function or exponential growth
x^{a}	power function	$b \cdot x^{a}$ can also be called a power function or power growth
$\|x\|$	absolute (numerical) value of x	$\begin{aligned} & \|3\|=3,\|-7\|=7 \\ & \|x\| \text { is also denoted } \operatorname{abs}(x) \end{aligned}$
$\sin (x)$	sine	
$\cos (x)$	cosine	
$\tan (x)$	tangent	$\tan (x)=\frac{\sin (x)}{\cos (x)}$

Symbol	Meaning	Examples, comments e.g.
$\sin ^{-1}(y)$	inverse sine function	$\begin{aligned} & \sin ^{-1}(y)=x \Leftrightarrow \sin (x)=y \\ & \sin ^{-1}(0.5)=30^{\circ} \\ & \sin ^{-1} \text { is also denoted Arcsin } \end{aligned}$
$\cos ^{-1}(y)$	inverse cosine function	$\begin{aligned} & \cos ^{-1}(y)=x \Leftrightarrow \cos (x)=y \\ & \cos ^{-1}(0.5)=60^{\circ} \end{aligned}$
$\tan ^{-1}(y)$	inverse tangent function	$\cos ^{-1}$ is also denoted Arccos $\begin{aligned} & \tan ^{-1}(y)=x \Leftrightarrow \tan (x)=y \\ & \tan ^{-1}(1)=45^{\circ} \\ & \tan ^{-1} \text { is also denoted Arctan } \end{aligned}$
$\lim _{x \rightarrow x_{0}} f(x)$	limit of $f(x)$ as x tends to x_{0}	$\lim _{x \rightarrow 3} \sqrt{x+1}=2$
$\lim _{x \rightarrow \infty} f(x)$	limit of $f(x)$ as x tends to ∞	$\lim _{x \rightarrow \infty} \frac{1}{x}=0$
$f(x) \rightarrow a$ for $x \rightarrow x_{0}$	$f(x)$ tends to a as x tends to x_{0}	$\sqrt{x+1} \rightarrow 2$ for $x \rightarrow 3$
$\begin{aligned} & f(x) \rightarrow a \\ & \text { for } x \rightarrow \infty \end{aligned}$	$f(x)$ tends to a as x tends to ∞	$\mathrm{e}^{-x} \rightarrow 0$ for $x \rightarrow \infty$
Δx	change in x	$\Delta x=x-x_{0}$
$\Delta y, \Delta f$	change in $y=f(x)$	$\Delta y=\Delta f=f(x)-f\left(x_{0}\right)$
$\frac{\Delta y}{\Delta x}, \frac{\Delta f}{\Delta x}$	difference quotient of $y=f(x)$	$\frac{\Delta y}{\Delta x}=\frac{\Delta f}{\Delta x}=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$
$f^{\prime}\left(x_{0}\right)$	derivative (differential quotient) of $y=f(x)$ at x_{0}	$\begin{aligned} f^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\ & =\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} \end{aligned}$
f^{\prime}	derivative of $y=f(x)$	$\begin{aligned} & \text { denoted } f^{\prime}(x), y^{\prime}, \frac{d}{d x} f(x), \\ & \frac{d}{d x}(f(x)), \frac{d f}{d x}, \frac{d y}{d x},\left(\sqrt{3 x^{2}+1}\right)^{\prime} \end{aligned}$
$f^{(n)}$	the n-th derivative of $y=f(x)$	$f^{(2)}(x)$ is often written $f^{\prime \prime}(x), y^{\prime \prime} \text { or } \frac{d^{2} y}{d x^{2}}$

Symbol Meaning Examples, comments e.g.
$A B \quad$ line segment $A B$
$|A B| \quad$ length of the line segment $A B$
$\overparen{A B} \quad$ (circular) arc $\overparen{A B}$
$|\overparen{A B}| \quad$ length of the arc $\overparen{A B}$
$\vec{a}, \overrightarrow{A B} \quad$ vector
$|\vec{a}|,|\overrightarrow{A B}| \quad$ length (norm) of the vector
$\hat{\vec{a}} \quad$ perpendicular vector the notation \hat{a} can also be used
$\vec{a} \cdot \vec{b} \quad$ scalar product, dot product the notation $\vec{a} \cdot \vec{b}$ can also be used
\(\left|\begin{array}{ll}a_{1} \& b_{1}

a_{2} \& b_{2}\end{array}\right| \quad\)| determinant of the pair of |
| :--- |
| vectors (\vec{a}, \vec{b}) |

\perp "is perpendicular to"
$\angle A \quad$ the angle A
$\angle A B D \quad$ the angle B in triangle $A B D$
$\angle(\vec{a}, \vec{b}) \quad$ angle v between \vec{a} and \vec{b}, where $0^{\circ} \leq v \leq 180^{\circ}$
the angle from \vec{a} to \vec{b}

right-angled triangle
perpendicular bisector n of the line segment $A B$

height from B on the side b or its extension

$m_{b} \quad$ median from B on the side b

$v_{B} \quad$ angular bisector of the angle B

the circumscribed circle of triangle $A B C$

the inscribed circle of triangle $A B C$

Index

A addition rule 29angle of inclination 13anglesangular bisector39angular bisector 40area- circle35

- parallelogram 35- trapezium
- triangle 3535
B bar chart 31
binomial distribution 31
binomial coefficient 31
box plot 26
C circle 35
circle, equation 15
circumference, circle 35
circumscribed circle 35
combinations 29
compound interest 5
confidence interval 32
cone 35
cumulative curve 25cosine
cylinder 358, 9, 37
D derivative 23, 24, 38determinantdifference quotientdifferential quotient12
38
23, 24, 38
difference betweendirection vector11
distance between
- point and line14
- two points 15dot plotdot product2611, 39
doubling constant
E event 30
exceptional outcomes 32
exponential function
- decreasing 20
- increasing 19
F factorial 29, 37
first degree 17
five-number summary 26
fraction rules 6
G grouped observations 25
growth rate 5, 19, 20
H halving constant, half-life 20
histogram 25
height 35, 40
I independent events 30
index values 5
inscribed circle 41
interquartile range 26
intersection, x-axis 16
inverse 6
L left-skew 27
length of vector 10
limit 38
linear function 17
linear regression 28
line, equation 13
line of best fit 28
line, vertical 13
logarithms 18
lower quartile 25, 26
M mean, mean value 27, 31
median (statistics) 25, 26
median (triangle) 40

midpoint multiplication factor multiplication rule		14		right-skew	27
		19, 20		root	17
		29			
N			S	sample space	30
	non-skew	27		scalar product	11, 39
	normale outcomes	32		scale factor	8
	normal distribution	32		second degree polynomial	17
	normal vector	14		similar triangles	8
0				sine	8, 9, 37
	orthogonal	39		sinusoidal function	22
	outlier	27		slope	13, 17
P				sphere	35
	$p \%$-fractile	25		square expansions	7
	parabola	16		standard deviation	27, 31
	parallel vectorer	12		statistical uncertainty	32
	parallelogram	35		sum of vectors	11
	Pascal's triangle	33		surface area	
	permutations	29		- cylinder	35
	percentages	5		- cone	35
	perpendicular	39		- sphere	35
	- bisector	40		symbols	36
	- vector	12			
	- vectors	11	T	tangent	8, 9, 37
	projection	12		tangent line	23
	probability	30, 31		trapezium	35
	potensfunktioner	21		trigonometric functions	22
	potensregneregler	7			
	power functions	21	U	ungrouped observations	26
	powers and roots	7		uniform probability space	30
				unit vector	10
Q	quadratic functions	17		upper quartile	25, 26
	quartile set	25, 26, 27			
			V	variance	31
R	random variable	31, 32		vectors	10
	regression, linear	28		vertical line	13
	regression line	28		vertex	16, 17
	residual	28		volume	
	- plot	28		- cylinder, cone, sphere	35
	- standard deviation	28			
	right-angled triangle	8, 40	Z	zero	17

