

Mathematical Formula Booklet

stx B-level

May 2020

Denne udgave af Matematisk formelsamling stx B-niveau er udgivet af Undervisningsministeriet og gjort tilgængelig på uvm.dk.

Formelsamlingen er udarbejdet i et samarbejde mellem Matematiklærerforeningen og Undervisningsministeriet, Styrelsen for Undervisning og Kvalitet, maj 2018

Kopiering til andet end personlig brug må kun ske efter aftale med Copy-Dan.

ISBN: 978-87-93747-04-3

Forfattere: Gert Schomacker, Jesper Bang-Jensen, Bodil Bruun og Jørgen Dejgaard

Edited by Gert Schomacker, Jesper Bang-Jensen, Bodil Bruun and Jørgen Dejgaard. Translated by Gert Schomacker. Version May 2020

Preface:

Preface:

"Mathematical formula collection stx B" has been prepared for use by the students at the written exam and in the teaching of mathematics at the stx B level.

The formula collection contains the topics that appear in the mathematics curriculum at stx B-level within both core content and supplementary content.

For the purpose of overview, formulas for area and volume of elementary geometric figures are included.

Furthermore, the formula collection contains a list of standard mathematical symbols.

The purpose of this is to give students a quick overview and to contribute to guide teachers and authors of educational material to use uniform notation, symbol language and terminology. The list of standard mathematical symbols therefore goes beyond the core content but remains within the mathematical universe at the upper secondary level (stx and hf).

A few of the formulas in the formula collection are only applicable under some conditions (e.g., that the denominator of a fraction is different from 0). For reasons of clarity such assumptions are not explicitly mentioned.

The figures are included as an illustration of the formulas. The figure often shows only one case among several possible cases.

The meaning of the quantities appearing in the formulas is not always explained. However, in cases where the meaning does not follow immediately by customary usage an explanation will be given.

> Birte Iversen Ministry of Education, The Board of Education and Quality, Office of Examinations, Exams and Tests May 2020

Contents

Percentage and interest	5
Index values	5
Proportionality	6
Fraction rules	6
Square expansions	7
Powers and roots	7
Similar triangles	8
Right-angled triangle	8
Triangles	9
Vectors in 2D	10
Lines, circles, and parabolas	13
Linear functions	17
Quadratic functions	17
Logarithms	18
Exponentially increasing functions	19
Exponentially decreasing functions	20
Power functions	21
Trigonometric functions	22
Differential calculus	23
Derivatives	24
Grouped observations	25
Ungrouped observations	26
Linear regression	28
Combinatorics	29
Probability	30
Binomial distribution	31
Pascal's triangle	33
Multiplication table	34

Percentage and interest

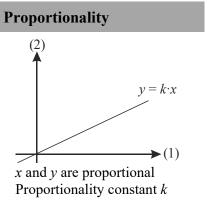
(1)	$S = B \cdot (1 + r)$
(2)	$r = \frac{S}{B} - 1$
(3)	$p\% = r \cdot 100\%$
	(2)

Compound interest formula Principal K_0 Interest rate p % per period Future value K after n periods

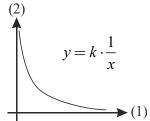
(4)
$$K = K_0 \cdot (1+r)^n$$
, where $r = \frac{p}{100}$

Annuity savings Deposit every period b Interest rate r Number of deposits n Future value A after last deposit

(5)
$$A = b \cdot \frac{(1+r)^n - 1}{r}$$


Annuity loan Principal G Interest rate r Number of payments n Periodic payment y

(6)
$$y = G \cdot \frac{r}{1 - (1 + r)^{-n}}$$


Index values

Value	В	S
Index value	I_{B}	I_{s}

(7)
$$I_s = \frac{S}{B} \cdot I_B$$
 $S = \frac{I_s}{I_B} \cdot B$

(8)
$$y = k \cdot x$$
 $\frac{y}{x} = k$

(9)
$$y = k \cdot \frac{1}{x}$$
 $x \cdot y = k$

x and y are inversely proportional

Fraction rules

(10)
$$a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$$

(11) $\frac{a}{\frac{b}{c}} = \frac{a \cdot c}{b}$
(12) $\frac{\frac{a}{b}}{\frac{c}{c}} = \frac{a}{b \cdot c}$
(13) $\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$
(14) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot c}$

14)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

Square expansions

(15)
$$(a+b)^2 = a^2 + b^2 + 2a \cdot b$$

(16) $(a-b)^2 = a^2 + b^2 - 2a \cdot b$

(17)
$$(a+b)(a-b) = a^2 - b^2$$

Powers and roots

$$(18) \qquad a^r \cdot a^s = a^{r+s}$$

$$(19) \qquad \frac{a^r}{a^s} = a^{r-s}$$

$$(20) \qquad (a^r)^s = a^{r \cdot s}$$

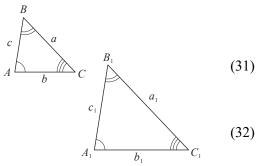
$$(21) \qquad (a \cdot b)^r = a^r \cdot b^r$$

(22)
$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

(23)
$$a^0 = 1$$

$$(24) \qquad a^{-r} = \frac{1}{a^r}$$

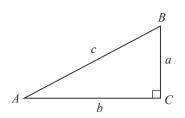
(25)
$$a^{-1} = \frac{1}{a}$$


$$(26) \qquad \sqrt[r]{a} = a^{\frac{1}{r}}$$

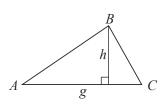
$$(27) \qquad \sqrt[s]{a^r} = a^{\frac{r}{s}}$$

(28)
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$

(29) $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$


$$(30) \qquad \sqrt{a} = a^{\frac{1}{2}}$$

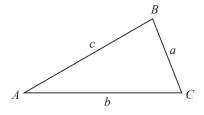
Similar triangles


(31)
$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c} = k$$
$$a_1 = k \cdot a$$
$$b_1 = k \cdot b$$
$$c_1 = k \cdot c$$

Right-angled triangle

The Pythagorean theorem	(33)	$c^2 = a^2 + b^2$
cosine	(34)	$\cos(A) = \frac{b}{c}$
sine	(35)	$\sin(A) = \frac{a}{c}$
tangent	(36)	$\tan(A) = \frac{a}{b}$

Triangles

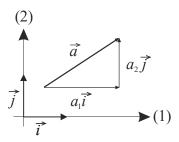


Sum of angles of a triangle

(37) $A + B + C = 180^{\circ}$

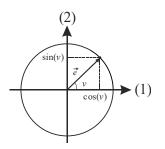
Area *T* of a triangle

$$(38) T = \frac{1}{2}h \cdot g$$


Law of cosines

Law of sines

(39)
$$c^{2} = a^{2} + b^{2} - 2a \cdot b \cdot \cos(C)$$
$$a \qquad b \qquad c$$


(40)
$$\frac{u}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}$$

Area *T* of a triangle (41) $T = \frac{1}{2}a \cdot b \cdot \sin(C)$

Coordinates of vector \vec{a} , where $|\vec{i}| = |\vec{j}| = 1$

(42)
$$\vec{a} = a_1 \cdot \vec{i} + a_2 \cdot \vec{j} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$(43) \qquad \vec{e} =$$

(44)

Unit vector \vec{e} in the same direction as \vec{a}

a₂

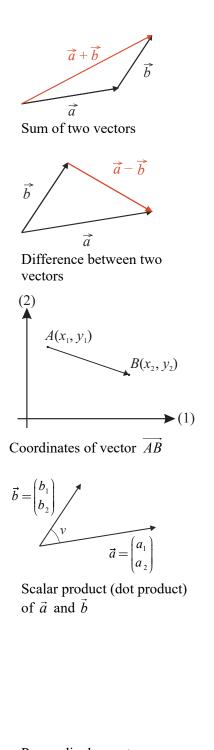
Unit vector

ā

 a_1

(45)
$$|\vec{a}| = \begin{vmatrix} a_1 \\ a_2 \end{vmatrix} = \sqrt{a_1^2 + a_2^2}$$

 $\begin{pmatrix}
\cos(v) \\
\sin(v)
\end{pmatrix}$


 $\vec{e} = \frac{\vec{a}}{|\vec{a}|}$

Length (norm) of vector
$$\vec{a}$$

Vector \vec{a} multiplied by a scalar k

(46)
$$k \cdot \vec{a} = k \cdot \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} k \cdot a_1 \\ k \cdot a_2 \end{pmatrix}$$

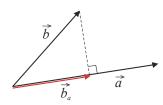
(47)
$$\vec{a} + \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

(48)
$$\vec{a} - \vec{b} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} - \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} a_1 - b_1 \\ a_2 - b_2 \end{pmatrix}$$

(49)
$$\overrightarrow{AB} = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$

$$(50) \qquad \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2$$

(51)
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(v)$$

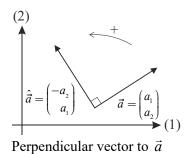

Perpendicular vectors

Squaring a vector

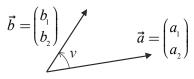
(52)
$$\cos(v) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$$

(53)
$$\vec{a} \cdot \vec{b} = 0 \iff \vec{a} \perp \vec{b}$$

(54)
$$\vec{a} \cdot \vec{a} = \vec{a}^2 = |\vec{a}|^2$$

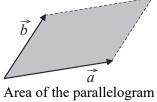


Projection of \vec{b} onto \vec{a}


(55)
$$\vec{b}_a = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \cdot \vec{a}$$

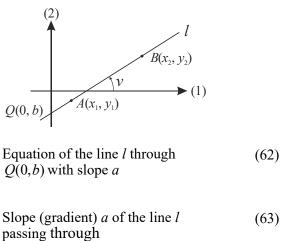
The length of the projection vector

(56)
$$|\vec{b}_a| = \frac{|\vec{a} \cdot \vec{b}|}{|\vec{a}|}$$


(57)
$$\hat{\vec{a}} = \begin{pmatrix} \widehat{a_1} \\ a_2 \end{pmatrix} = \begin{pmatrix} -a_2 \\ a_1 \end{pmatrix}$$

The determinant of a pair of vectors (\vec{a}, \vec{b})

(58)
$$\det(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} = a_1 b_2 - a_2 b_1$$
$$= \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$
(59)
$$\det(\vec{a}, \vec{b}) = |\vec{a}| \cdot |\vec{b}| \cdot \sin(v)$$
(60)
$$\det(\vec{a}, \vec{b}) = 0 \iff \vec{a} \parallel \vec{b}$$


Parallel vectors

Area of the parallelogram spanned by \vec{a} and \vec{b}

(61) $A = |\det(\vec{a}, \vec{b})|$

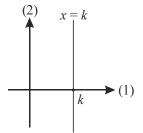
Lines, circles and parabolas

 $A(x_1, y_1)$ and $B(x_2, y_2)$

y-intercept

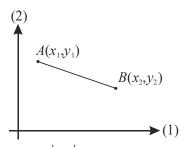
Equation of the line *l* through $A(x_1, y_1)$ of slope *a*

(63) $a = \frac{y_2 - y_1}{x_2 - x_1}$

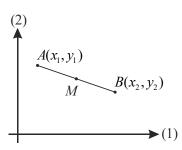

 $y = a \cdot x + b$

$$(64) \qquad b = y_1 - a \cdot x_1$$

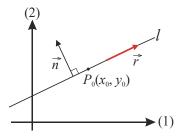
(65) $y = a \cdot (x - x_1) + y_1$


Angle *v* of inclination is the angle from the *x*-axis to *l* (positive or negative)

$$(66) \qquad a = \tan(v)$$


Equation of a vertical line

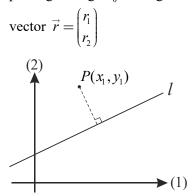
 $(67) \qquad x = k$


Distance |AB| between two points $A(x_1, y_1)$ and $B(x_2, y_2)$

(69)
$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

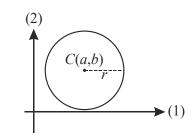
Midpoint M of line segment AB

(70)
$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$



Equation of the line l passing through P_0 having normal vector

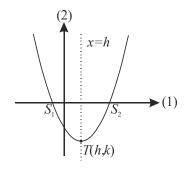
(71)
$$a \cdot (x - x_0) + b \cdot (y - y_0) = 0$$


$$\vec{n} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Parametric equations of the line
$$l$$
 passing through P_0 having direction

Distance dist(*P*,*l*) of the point $P(x_1, y_1)$ to the line *l* with equation $y = a \cdot x + b$

Distance dist(*P*,*l*) of the point $P(x_1, y_1)$ to the line *l* with equation $a \cdot x + b \cdot y + c = 0$


Equation of circle with center C(a,b) and radius r

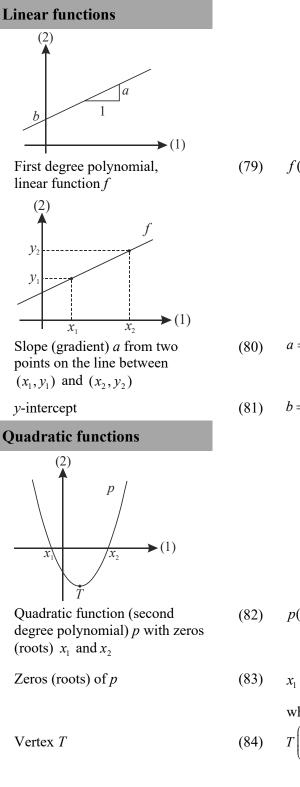
(72)
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} + t \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$$

(73)
$$\operatorname{dist}(P,l) = \frac{|a \cdot x_1 + b - y_1|}{\sqrt{a^2 + 1}}$$

(74) dist(P,l) =
$$\frac{|a \cdot x_1 + b \cdot y_1 + c|}{\sqrt{a^2 + b^2}}$$

(75)
$$(x-a)^2 + (y-b)^2 = r^2$$

Equation of parabola with symmetry axis parallel to the *y*-axis


(76)
$$y = a \cdot x^2 + b \cdot x + c = a \cdot (x - h)^2 + k$$

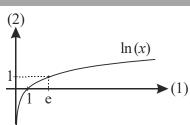
Vertex T

(77)
$$T(h,k) = T\left(\frac{-b}{2a}, \frac{-d}{4a}\right), \quad d = b^2 - 4ac$$

Points of intersection S_1 og S_2 with the *x*-axis

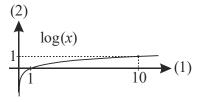
(78)
$$S_1\left(\frac{-b-\sqrt{d}}{2a},0\right), S_2\left(\frac{-b+\sqrt{d}}{2a},0\right)$$

$$(79) \qquad f(x) = a \cdot x + b$$


$$(80) \qquad a = \frac{y_2 - y_1}{x_2 - x_1}$$

$$(81) \qquad b = y_1 - a \cdot x_1$$

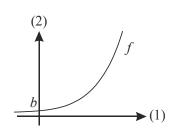
(82)
$$p(x) = a \cdot x^2 + b \cdot x + c$$
$$= a \cdot (x - x_1) \cdot (x - x_2)$$


(83)
$$x_{1} = \frac{-b - \sqrt{d}}{2a}, \quad x_{2} = \frac{-b + \sqrt{d}}{2a},$$

where $d = b^{2} - 4ac$
(84) $T\left(\frac{-b}{2a}, \frac{-d}{4a}\right)$

The graph of the natural logarithm

(85)
$$\ln(x) \rightarrow -\infty$$
 as $x \rightarrow 0$
(86) $\ln(x) \rightarrow \infty$ as $x \rightarrow \infty$
(87) $y = \ln(x) \Leftrightarrow x = e^{y}$
(88) $\ln(e) = 1$
(89) $\ln(a \cdot b) = \ln(a) + \ln(b)$
(90) $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$
(91) $\ln(a^{r}) = r \cdot \ln(a)$



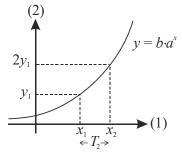
The graph of the logarithmic with base 10

(92)
$$\log(x) \rightarrow -\infty$$
 as $x \rightarrow 0$
(93) $\log(x) \rightarrow \infty$ as $x \rightarrow \infty$
(94) $y = \log(x) \Leftrightarrow x = 10^{y}$
(95) $\log(10) = 1$
(96) $\log(a \cdot b) = \log(a) + \log(b)$
(97) $\log\left(\frac{a}{b}\right) = \log(a) - \log(b)$

 $\log(a^r) = r \cdot \log(a)$

Exponentially increasing functions

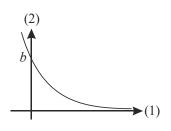
The graph of an exponentially increasing function fa > 1growth rate r > 0k > 0


(99)
$$f(x) = b \cdot a^{x}$$
$$= b \cdot (1+r)^{x}$$
$$= b \cdot e^{k \cdot x}, \text{ where } k = \ln(a)$$

(100)
$$f(x) \to \infty$$
 as $x \to \infty$
(101) $f(x) \to 0$ as $x \to -\infty$
(102) $a = \frac{x_2 - x_1}{\sqrt{\frac{y_2}{y_1}}} = \left(\frac{y_2}{y_1}\right)^{\frac{1}{x_2 - x_1}}$

Multiplication factor *a* given two points on the graph (x_1, y_1) and (x_2, y_2)

$$(103) \quad b = \frac{y_1}{a^{x_1}}$$


y-intercept

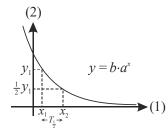
Doubling constant T_2

(104)
$$T_2 = x_2 - x_1$$

(105) $T_2 = \frac{\log(2)}{\log(a)} = \frac{\ln(2)}{\ln(a)} = \frac{\ln(2)}{k}$

Exponentially decreasing functions

The graph of an exponentially decreasing function f0 < a < 1growth rate r < 0k < 0

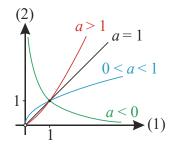

(106)
$$f(x) = b \cdot a^{x}$$
$$= b \cdot (1+r)^{x}$$
$$= b \cdot e^{k \cdot x}, \text{ where } k = \ln(a)$$

(107)
$$f(x) \to 0$$
 as $x \to \infty$
(108) $f(x) \to \infty$ as $x \to -\infty$
(109) $a = \frac{x_2 - x_1}{\sqrt{\frac{y_2}{y_1}}} = \left(\frac{y_2}{y_1}\right)^{\frac{1}{x_2 - x_1}}$

Multiplication factor *a* using two points on the graph (x_1, y_1) and (x_2, y_2)

y-intercept

$$(110) \quad b = \frac{y_1}{a^{x_1}}$$


Halving constant (half-life) $T_{\frac{1}{2}}$

(111)
$$T_{\frac{1}{2}} = x_2 - x_1$$

(112) $T_{\frac{1}{2}} = \frac{\log(\frac{1}{2})}{\log(a)} = \frac{\ln(\frac{1}{2})}{\ln(a)} = \frac{\ln(\frac{1}{2})}{k}$

Power functions

 $(113) \quad f(x) = b \cdot x^a$

Graphs of $f(x) = x^a$

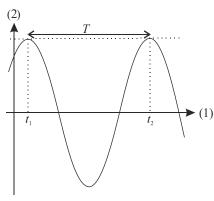
Determining the number *a* given two points on the graph (x_1, y_1) and (x_2, y_2)

(114) $a = \frac{\log(y_2) - \log(y_1)}{\log(x_2) - \log(x_1)} = \frac{\ln(y_2) - \ln(y_1)}{\ln(x_2) - \ln(x_1)}$ (115) $b = \frac{y_1}{x_1^a}$

Multiplying x by a factor $1 + r_x$ will result in a multiplication of f(x) by a factor $1 + r_y$

Multiplying x by a factor k will result in a multiplication of f(x) by a factor k^a

(117)
$$f(k \cdot x) = k^a \cdot f(x)$$

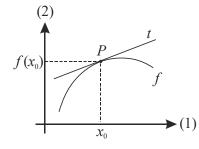

(116)

 $1 + r_v = (1 + r_x)^a$

Trigonometric functions

Sinusoidal function f

(118)
$$f(t) = A \cdot \sin(\omega \cdot t + \varphi)$$


Graph of a sinusoidal function f with amplitude A and period T

(119)
$$T = t_2 - t_1 = \frac{2\pi}{\omega}$$

Differential Calculus

Derivative (differential quotient) $f'(x_0)$ of the function f at x_0

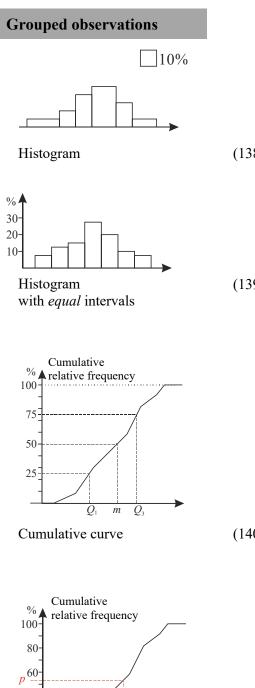
(120)
$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Equation of the tangent line *t* to the graph of *f* at $P(x_0, f(x_0))$

Rules of differentiation

(121)
$$y = f'(x_0) \cdot (x - x_0) + f(x_0)$$

or
$$y = a \cdot x + b \text{, where}$$
$$a = f'(x_0) \text{ and } b = y_0 - a \cdot x_0$$


- (122) $(k \cdot f(x))' = k \cdot f'(x)$
- (123) (f(x) + g(x))' = f'(x) + g'(x)
- (124) (f(x) g(x))' = f'(x) g'(x)

(125)
$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

(126)
$$(f(a \cdot x + b))' = a \cdot f'(a \cdot x + b)$$

Derivatives

	I	Function $y = f(x)$	Derivative $y' = f'(x) = \frac{dy}{dx}$
Linear function	(127)	$a \cdot x + b$	а
	(128)	k	0
The natural logarithm	(129)	$\ln(x)$	$\frac{1}{x} = x^{-1}$
Exponential functions	(130)	e ^x	e ^x
	(131)	e ^{<i>k x</i>}	$k \cdot e^{kx}$
	(132)	a^{x}	$a^x \cdot \ln(a)$
Power functions	(133)	x^{a}	$a \cdot x^{a-1}$
	(134)	$\frac{1}{x} = x^{-1}$	$-\frac{1}{x^2} = -x^{-2}$ $\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$
	(135)	$\sqrt{x} = x^{\frac{1}{2}}$	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$
Trigonometric functions	(136)	$\cos(x)$	$-\sin(x)$
	(137)	$\sin(x)$	$\cos(x)$

 X_p

40

- (138) Area of a rectangle corresponds to the frequency for the interval
- (139) Height of a rectangle corresponds to the frequency for the interval

(140) Q_1 : lower quartile, 25% -fractile m : median, 50% -fractile Q_3 : upper quartile, 75% -fractile x_p : p% -fractile

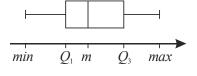
Ungrouped observations

(141) Observations on a number line

Dot plot

••	•••	••••	• •	(142)
				(142)
min				

max


Range

$$Q_1$$

$$\xrightarrow{\circ\circ\circ\circ\circ\circ}$$

Interquartile range

Quartile set

Five-number summary

(144)max – min

(143)

min: minimum

max: maximum

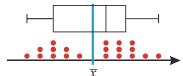
(145)*m*: median

(middle observation, when the number of observations is odd, otherwise the average of the two middle observations)

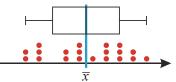
(146) Q_1 : lower quartile (median of the lower half of the observations)

(147) Q_3 : upper quartile (median of the upper half of the observations)

(48)
$$Q_3 - Q_1$$


- (149) Boxplot, box-and-whiskers plot (box height is irrelevant)
- (150) (Q_1, m, Q_3)
- (min, Q_1, m, Q_3, max) (151)

(152) An observation more than one and a half times the interquartile range below the lower quartile or more than one and a half times the interquartile range above the upper quartile


Mean
$$\overline{x}$$
 of the observations x_1, x_2, \dots, x_n

Standard deviation of observations x_1, x_2, \dots, x_n

Outlier

Left-skew distribution

Non-skew distribution

Right-skew distribution

(153)
$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

(154) $\sigma = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}} = \sqrt{\frac{(x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n}}$

- (155) Mean is less than median $\overline{x} < m$
- (156) Mean equals median $\overline{x} = m$
- (157) Mean is greater than median $\overline{x} > m$

Estimating the population mean and standard deviation using a random sample x_1, x_2, \dots, x_n

Estimate
$$\overline{x}$$
 of the mean (153a) $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$
Estimate s of the standard (154a) $s = \sqrt{\frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n-1}}$
 $= \sqrt{\frac{(x_1 - \overline{x})^2 + \dots + (x_n - \overline{x})^2}{n-1}}$

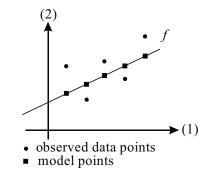

Linear regression

Table with bivariate	(158)	x	x_1	<i>x</i> ₂	<i>x</i> ₃	•••	X_n
observed data		У	\mathcal{Y}_1	\mathcal{Y}_2	y_3		\mathcal{Y}_n

Regression line

(159) Line of best fit, graph of $f(x) = a \cdot x + b$

Scatter plot and line of best (160) fit

Residual

(161) Difference between observed *y*-value and the corresponding model *y*-value

Table of residuals

x	x_1	<i>x</i> ₂	 X_n
Residual	$r_1 = y_1 - f(x_1)$	$r_2 = y_2 - f(x_2)$	 $r_n = y_n - f(x_n)$

Residual plot	(163)	(2)
		$ \begin{array}{c} r_{3} \\ \hline r_{n} \\ \hline r_{2} \\ \hline \end{array} \xrightarrow{x_{1}} x_{3} \\ \hline x_{n} \\$
Residual standard deviation	(164)	$s = \sqrt{\frac{r_1^2 + r_2^2 + \dots + r_n^2}{n-2}}$

(162)

Combinatorics

Multiplication rule Number of ways to choose both one element of N and one element of M, where N has n elements and M has m elements

Addition rule Number of ways to choose either one element of N or one element of M, where N has n elements and M has m elements

(

Factorial

(167)
$$n! = n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1$$

Permutations Number of ways to select r elements among n elements, when order matters

(168)
$$P(n,r) = \frac{n!}{(n-r)!}$$

Combinations

Number of ways to select r elements among n elements, when order does not matter

(169)
$$K(n,r) = \frac{n!}{r!(n-r)!}$$

Probability

Probability space with	(170)	(U,
sample space U and probabilities p		
probabilities p		

Sample space U with noutcomes

Sum of all probabilities

Table of probabilities

Event A with

k outcomes from U

Probability of event A

(,p)

(171) Set of all outcomes $\{u_1, u_2, \cdots, u_n\}$

$$(172) \quad p_1 + p_2 + p_3 + \dots + p_n = 1$$

(173)	Outcome	<i>u</i> ₁	<i>u</i> ₂	<i>u</i> ₃	 u_n	
	Probability	p_1	p_2	p_3	 p_n	

(174) Set of k outcomes from U

(175) Sum of the probabilities of the k outcomes

Uniform probability space

All outcomes have the same probability

Probability of selecting an element from A

Probability of both A and B, when A and B are independent events

Probability of *A* or *B*, when A and B are mutually exclusive events

(176)
$$p_1 = p_2 = p_3 = \dots = p_n = \frac{1}{n}$$

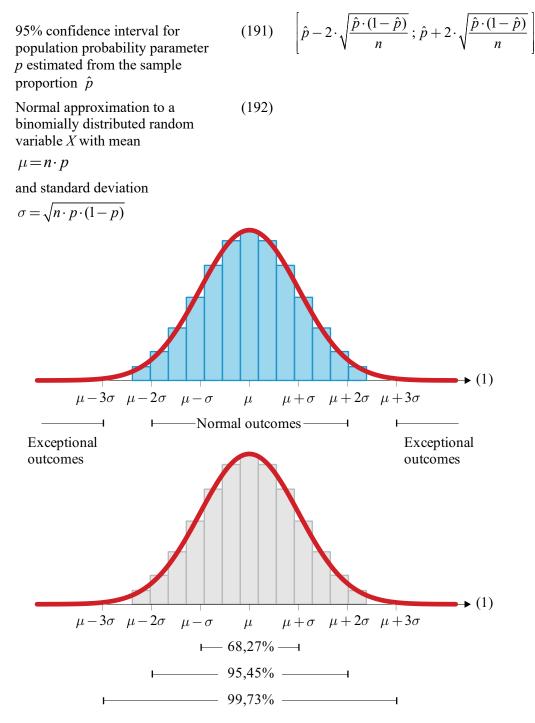
(177)
$$P(A) = \frac{k}{n}$$

= $\frac{number of favourable outcomes to A}{number of possible outcomes}$

(178)
$$P(\text{both } A \text{ and } B) = P(A) \cdot P(B)$$

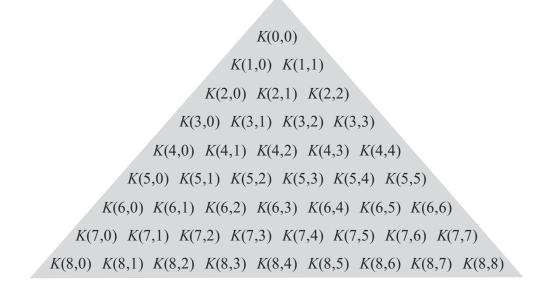
(179) P(A or B) = P(A) + P(B)

Probability distribution table
for a random variable X
(180)
$$\frac{x_i \quad x_1 \quad x_2 \quad x_3 \quad \dots \quad x_n}{P(X = x_i) \quad p_i \quad p_2 \quad p_3 \quad \dots \quad p_n}$$
Bar chart. Height of a bar
corresponds to the
probability of the outcome
(181)
(2)
$$\int_{x_1, x_2, x_3, \dots \quad x_n} (1)$$
Mean (mean value) of a
random variable X
(182)
$$\mu = E(X) = \sum_{i=1}^n x_i \cdot P(X = x_i) = x_i \cdot p_i + x_2 \cdot p_2 + x_3 \cdot p_3 + \dots + x_n \cdot p_n$$
Variance of a random
variable X
(183)
$$Var(X) = \sum_{i=1}^n (x_i - \mu)^2 \cdot P(X = x_i) = (x_i - \mu)^2 \cdot p_i + \dots + (x_n - \mu)^2 \cdot p_n$$
Standard deviation of
random variable X
(184)
$$\sigma = \sigma(X) = \sqrt{Var(X)}$$
Binomial distributed
random variable X
(185)
$$X - b(n, p)$$
Binomial coefficient
 $K(n, r)$
(186)
$$K(n, r) = \begin{bmatrix} n \\ r \end{bmatrix} = \frac{n!}{r!(n-r)!}$$
(187)
$$K(n, r) = K(n, n - r)$$
Probability distributed
random variable X
(189)
$$\mu = n \cdot p$$
Standard deviation σ
(190)
$$\sigma = \sqrt{n \cdot p \cdot (1-p)}$$


31

 x_n . . .

 p_n


•••

Number *n* of objects in the sample

Pascal's triangle

(193)

Multiplication table

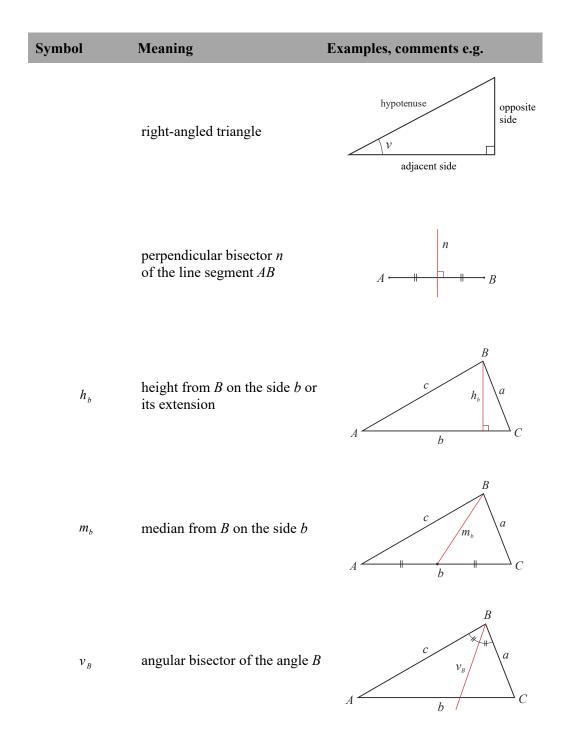
(194)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
3	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57	60
4	4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	76	80
5	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
6	6	12	18	24	30	36	42	48	54	60	66	72	78	84	90	96	102	108	114	120
7	7	14	21	28	35	42	49	56	63	70	77	84	91	98	105	112	119	126	133	140
8	8	16	24	32	40	48	56	64	72	80	88	96	104	112	120	128	136	144	152	160
9	9	18	27	36	45	54	63	72	81	90	99	108	117	126	135	144	153	162	171	180
10	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200
11	11	22	33	44	55	66	77	88	99	110	121	132	143	154	165	176	187	198	209	220
12	12	24	36	48	60	72	84	96	108	120	132	144	156	168	180	192	204	216	228	240
13	13	26	39	52	65	78	91	104	117	130	143	156	169	182	195	208	221	234	247	260
14	14	28	42	56	70	84	98	112	126	140	154	168	182	196	210	224	238	252	266	280
15	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	300
16	16	32	48	64	80	96	112	128	144	160	176	192	208	224	240	256	272	288	304	320
17	17	34	51	68	85	102	119	136	153	170	187	204	221	238	255	272	289	306	323	340
18	18	36	54	72	90	108	126	144	162	180	198	216	234	252	270	288	306	324	342	360
19	19	38	57	76	95	114	133	152	171	190	209	228	247	266	285	304	323	342	361	380
20	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300	320	340	360	380	400

Red numbers: Squares

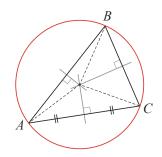
Triagle			
	h	height	
	g	base	1 17 -
A g C	A	area	$A = \frac{1}{2}h \cdot g$
Parallelogram			
	h	height	
	g A	base area	$A = h \cdot g$
g	A	arca	n - n g
Trapezium			
$\frac{a}{h}$	h a, b	height parallel sides	
	и, <i>о</i> А		$A = \frac{1}{2}h \cdot (a+b)$
b	A	area	$A = \frac{1}{2}n^2(u+b)$
Circle			
r	r	radius	2
	A	area	$A = \pi r^2$
	0	circumference	$O = 2\pi r$
Sphere			
	r	radius	2
· · · ·	0	surface area	$O = 4\pi r^2$
	V	volume	$V = \frac{4}{3}\pi r^3$
Cylinder			
	h	height	
h	r	base radius	. . .
	0	lateral surface area	$O = 2\pi r \cdot h$
	V	volume	$V = \pi r^2 \cdot h$
Cone			
Λ	h	height	
	S	length of slant base radius	
$\begin{pmatrix} h \\ s \end{pmatrix}$	r O	lateral surface area	$O = \pi r \cdot s$
()	U V	volume	$V = \frac{1}{3}\pi r^2 \cdot h$
			3

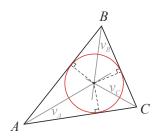
Area, circumference, volume and surface area of geometric figures


Symbol	Meaning	Examples, comments e.g.	
{.,.,.}	set in list form	$\{-5,0,3,10\},\{-5,0,3,10\},\{2,4,6,\}$	
\mathbb{N}	the set of natural numbers	$\mathbb{N} = \{1, 2, 3,\}$	
\mathbb{Z}	the set of integers	$\mathbb{Z} = \{, -2, -1, 0, 1, 2,\}$	
\mathbb{Q}	the set of rational numbers	tal, der kan skrives $\frac{p}{q}$, $p \in \mathbb{Z}$, $q \in \mathbb{N}$	
\mathbb{R}	the set of real numbers		
E	belongs to / is an element of	$2 \in \mathbb{N}$	
[a;b]	closed interval	$[1;3] = \{x \in \mathbb{R} \mid 1 \le x \le 3\}$	
]a;b]	half-open interval	$]1;3] = \{x \in \mathbb{R} \mid 1 < x \le 3\}$	
[a;b[half-open interval	$[1;3] = \{x \in \mathbb{R} \mid 1 \le x < 3\}$	
] a ;b [open interval	$]1;3[=\{x \in \mathbb{R} \mid 1 < x < 3\}$	
\subset	is a proper subset of	$\{1,2,3\} \subset \mathbb{N}$	
\cap	intersection set	$A \cap B$ $A \bigcirc B$	
\cup	union set	$A \cup B$ $A \bigcirc B$	
١	set difference	$A \setminus B$ $A \bigcirc B$	
\overline{A}	complement of A	$U \setminus A$ U A	
Ø	the empty set		
	disjoint sets	$A \cap B = \emptyset \qquad A \bigcirc B$	
×	× product set $[-10;10] \times [-10;10]$		
^	"and" meaning "both and" (conjunction)	$x < 2 \land y = 5$	
V	"or" meaning "and/or" (disjunction)	$x < 2 \lor x > 5$	

Mathematical symbols

Symbol	Meaning	Examples, comments e.g.
\Rightarrow	"implies", "if then" (implication)	$x=2 \implies x^2=4$
\Leftrightarrow	"equivalent", "if and only if" (biconditional)	$x^2 = 4 \iff x = -2 \lor x = 2$
$\sum_{i=1}^{n} a_i$	$a_1 + a_2 + \ldots + a_n$	$\sum_{i=1}^{4} i^2 = 1^2 + 2^2 + 3^2 + 4^2$
<i>n</i> !	n factorial	$n! = 1 \cdot 2 \cdot \dots \cdot n \text{for } n \ge 1$ $0! = 1$
f(x)	value of the function f at x	If $f(x) = \sqrt{2x+1}$, then $f(4) = 3$.
$\operatorname{Dm}(f)$	domain of f	
$\operatorname{Vm}(f)$	range of f	
$f\circ g$	composite function	$(f \circ g)(x) = f(g(x))$
f^{-1}	inverse function	$s = f(t) \iff t = f^{-1}(s)$
$\log(x)$	logarithm with base 10	$y = \log(x) \iff x = 10^{y}$
$\ln(x)$	natural logarithm	$y = \ln(x) \iff x = e^{y}$
e ^x	natural exponential function	e^x is also denoted $exp(x)$
a^{x}	exponential function with base $a, a > 0$	$b \cdot a^x$ can also be called an exponential function or exponential growth
x^{a}	power function	$b \cdot x^a$ can also be called a power function or power growth
x	absolute (numerical) value of <i>x</i>	3 =3, -7 =7 x is also denoted $abs(x)$
$\sin(x)$	sine	
$\cos(x)$	cosine	
$\tan(x)$	tangent	$\tan(x) = \frac{\sin(x)}{\cos(x)}$


Symbol	Meaning	Examples, comments e.g.
$\sin^{-1}(y)$	inverse sine function	$\sin^{-1}(y) = x \iff \sin(x) = y$
		$\sin^{-1}(0.5) = 30^{\circ}$
		sin ⁻¹ is also denoted Arcsin
$\cos^{-1}(y)$	inverse cosine function	$\cos^{-1}(y) = x \iff \cos(x) = y$
		$\cos^{-1}(0.5) = 60^{\circ}$
		cos ⁻¹ is also denoted Arccos
$\tan^{-1}(y)$	inverse tangent function	$\tan^{-1}(y) = x \iff \tan(x) = y$
		$\tan^{-1}(1) = 45^{\circ}$
		tan ⁻¹ is also denoted Arctan
$\lim_{x\to x_0}f(x)$	limit of $f(x)$ as x tends to x_0	$\lim_{x \to 3} \sqrt{x+1} = 2$
$\lim_{x\to\infty}f(x)$	limit of $f(x)$	r. 1 o
x→∞	as x tends to ∞	$\lim_{x \to \infty} \frac{1}{x} = 0$
$f(x) \rightarrow a$	f(x) tends to a	$\sqrt{x+1} \rightarrow 2$ for $x \rightarrow 3$
for $x \to x_0$	as x tends to x_0	<i>Vx</i> + 1 <i>Y</i> 2 101 <i>x Y</i> 5
$f(x) \to a$	f(x) tends to a	$e^{-x} \rightarrow 0$ for $x \rightarrow \infty$
for $x \to \infty$	as x tends to ∞	
Δx	change in <i>x</i>	$\Delta x = x - x_0$
$\Delta y, \Delta f$	change in $y = f(x)$	$\Delta y = \Delta f = f(x) - f(x_0)$
$\frac{\Delta y}{\Delta x}, \frac{\Delta f}{\Delta x}$	difference quotient of $y = f(x)$	$\frac{\Delta y}{\Delta x} = \frac{\Delta f}{\Delta x} = \frac{f(x) - f(x_0)}{x - x_0}$
$f'(x_0)$	derivative (differential quotient) of $y = f(x)$ at x_0	$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$
		$= \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$
f'	derivative of $y = f(x)$	denoted $f'(x)$, y' , $\frac{d}{dx}f(x)$,
		$\frac{d}{dx}(f(x)), \frac{df}{dx}, \frac{dy}{dx}, \left(\sqrt{3x^2+1}\right)'$
$f^{(n)}$	the <i>n</i> -th derivative of	$f^{(2)}(x)$ is often written
	y = f(x)	$f''(x)$, y'' or $\frac{d^2y}{dx^2}$


Symbol	Meaning	Examples, comments e.g.
AB	line segment AB	
AB	length of the line segment <i>AB</i>	
\widehat{AB}	(circular) arc \widehat{AB}	
$ \widehat{AB} $	length of the arc \widehat{AB}	
\vec{a}, \vec{AB}	vector	
$ \vec{a} , \vec{AB} $	length (norm) of the vector	
$\hat{\vec{a}}$	perpendicular vector	the notation \hat{a} can also be used
$\vec{a}\cdot\vec{b}$	scalar product, dot product	the notation $\vec{a} \cdot \vec{b}$ can also be used
$\begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$	determinant of the pair of vectors (\vec{a}, \vec{b})	the notation $det(\vec{a}, \vec{b})$ is also used
\perp	"is perpendicular to"	$l \perp m$ can also be read as " <i>l</i> and <i>m</i> are orthogonal"
$\angle A$	the angle A	$\angle A = 110^{\circ}$ or $A = 110^{\circ}$
∠ ABD	the angle <i>B</i> in triangle <i>ABD</i>	
$\angle(\vec{a},\vec{b})$	angle v between \vec{a} and \vec{b} , where $0^{\circ} \le v \le 180^{\circ}$	\vec{a} \vec{v} \vec{b}
	the angle from \vec{a} to \vec{b}	\vec{a} -115° 245° \vec{b}

Meaning

the circumscribed circle of triangle ABC

the inscribed circle of triangle *ABC*

Index

Α	addition rule	29	Е	event	30
	angle of inclination	13		exceptional outcomes	32
	angles	39		exponential function	
	angular bisector	40		- decreasing	20
	area			- increasing	19
	- circle	35		e	
	- parallelogram	35	F	factorial	29, 37
	- trapezium	35		first degree	17
	- triangle	35		five-number summary	26
	C			fraction rules	6
B	bar chart	31			
	binomial distribution	31	G	grouped observations	25
	binomial coefficient	31		growth rate	5, 19, 20
	box plot	26			
			Н	halving constant, half-life	20
С	circle	35		histogram	25
	circle, equation	15		height	35, 40
	circumference, circle	35			
	circumscribed circle	35	Ι	independent events	30
	combinations	29		index values	5
	compound interest	5		inscribed circle	41
	confidence interval	32		interquartile range	26
	cone	35		intersection, x-axis	16
	cumulative curve	25		inverse	6
	cosine	8, 9, 37			
	cylinder	35	L	left-skew	27
				length of vector	10
D	derivative	23, 24, 38		limit	38
	determinant	12		linear function	17
	difference quotient	38		linear regression	28
	differential quotient	23, 24, 38		line, equation	13
	difference between	11		line of best fit	28
	direction vector	15		line, vertical	13
	distance between			logarithms	18
	- point and line	14		lower quartile	25, 26
	- two points	15			
	dot plot	26	Μ	mean, mean value	27, 31
	dot product	11, 39		median (statistics)	25, 26
	doubling constant	19		median (triangle)	40

	midpoint	14		right-skew	27
	multiplication factor	19, 20		root	17
	multiplication rule	29			
	1		S	sample space	30
Ν	non-skew	27		scalar product	11, 39
	normale outcomes	32		scale factor	8
	normal distribution	32		second degree polynomial	17
	normal vector	14		similar triangles	8
				sine	8, 9, 37
0	orthogonal	39		sinusoidal function	22
	outlier	27		slope	13, 17
				sphere	35
Р	<i>p</i> % -fractile	25		square expansions	7
	parabola	16		standard deviation	27, 31
	parallel vectorer	12		statistical uncertainty	32
	parallelogram	35		sum of vectors	11
	Pascal's triangle	33		surface area	
	permutations	29		- cylinder	35
	percentages	5		- cone	35
	perpendicular	39		- sphere	35
	- bisector	40		symbols	36
	- vector	12			
	- vectors	11	Т	tangent	8, 9, 37
	projection	12		tangent line	23
	probability	30, 31		trapezium	35
	potensfunktioner	21		trigonometric functions	22
	potensregneregler	7			
	power functions	21	U	ungrouped observations	26
	powers and roots	7		uniform probability space	30
				unit vector	10
Q	quadratic functions	17		upper quartile	25, 26
	quartile set	25, 26, 27			
_			V	variance	31
R	random variable	31, 32		vectors	10
	regression, linear	28		vertical line	13
	regression line	28		vertex	16, 17
	residual	28		volume	- .
	- plot	28		- cylinder, cone, sphere	35
	- standard deviation	28	_		
	right-angled triangle	8,40	Z	zero	17